INTRODUCTION

Neutron Beam Therapy (NBT) is a type of radiation treatment that uses a particle accelerator so is not readily available in most of the country. Protons from the accelerator create a neutron beam that attacks cancer cells with more power than conventional radiation therapy. Neutrons are much heavier than photons, thus appear to be more effective in destroying very dense tumors. With neutron beam treatment, the risk of side effects on healthy tissue near the cancer site is greater, requiring equipment to precisely focus the beam and block exposure to any surrounding tissue. Currently, both the availability and the criteria for use are very limited.

INDICATIONS FOR NEUTRON BEAM THERAPY

- Neutron beam treatment is indicated for salivary gland cancers that are inoperable, recurrent, or are resected with gross residual disease or positive margins.
- Other uses of Neutron Beam Therapy are considered investigational and therefore are not approved because its effectiveness for these indications has not been established.

ADDITIONAL INFORMATION:

NBT has been employed mainly for the treatment of the salivary gland cancers. It has also been used to treat other malignancies such as soft tissue sarcoma, lung, pancreatic, colon, kidney and prostate cancers. Nevertheless, NBT has not gained wide acceptance because of the clinical difficulty in generating neutron particles and limited publications.

The safety and efficacy of neutron beam radiation therapy has not been established in the published medical literature. Complication rates were increased for NBT compared to other forms of external beam radiation therapy, and questions remain with regard to patient selection criteria, technical parameters, and comparative efficacy to other treatment modalities.
REFERENCES


Reviewed/Approved by Michael Pentecost, MD, Associate Chief Medical Officer